Identifying major drivers of daily streamflow from large-scale atmospheric circulation with machine learning

نویسندگان

چکیده

Previous studies linking large-scale atmospheric circulation and river flow with traditional machine learning techniques have predominantly explored monthly, seasonal or annual streamflow modelling for applications in direct downscaling hydrological climate-impact studies. This paper identifies major drivers of daily from using two reanalysis datasets six catchments Norway representing various Köppen-Geiger climate types flood-generating processes. A nested loop roughly pruned random forests is used feature extraction, demonstrating the potential automated retrieval physically consistent interpretable input variables. Random forest (RF), support vector (SVM) regression multilayer perceptron (MLP) neural networks are compared to multiple-linear assess role model complexity utilizing identified reconstruct streamflow. The models were trained on 31 years aggregated data distinct moving windows each catchment, reflecting catchment-specific forcing-response relationships between atmosphere rivers. results show that accuracy improves some extent complexity. In all but smallest, rainfall-driven most complex model, MLP, gives a Nash-Sutcliffe Efficiency (NSE) ranging 0.71 0.81 testing spanning five years. poorer performance by smallest catchment discussed relation characteristics, sub-grid topography local variability. intra-model differences also viewed consistency automatically retrieved selections datasets. study provides benchmark future development deep variables Norway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of the models of large-scale atmospheric circulation system model on intesify rainfall in Ardebil plain

Atmospheric circulation is important to determine the surface climate and environment, and affect regional climate and surface features. In this study, to quantify its effect, the classification system, developed by Lamb is applied to obtain circulation information for Ardabil, North West Province in Iran, on a daily basis, and is a method to classify synoptic weather for study area. For that p...

متن کامل

Large Scale Machine Learning

Cette thèse aborde de façon générale les algorithmes d'apprentissage, avec un intérêt tout particulier pour les grandes bases de données. Après avoir for-mulé leprobì eme de l'apprentissage demanì ere mathématique, nous présentons plusieurs algorithmes d'apprentissage importants, en particulier les Multi Layer Perceptrons, les Mixture d'Experts ainsi que les Support Vector Machines. Nous consid...

متن کامل

Periodic variability in the large-scale Southern Hemisphere atmospheric circulation.

Periodic behavior in the climate system has important implications not only for weather prediction but also for understanding and interpreting the physical processes that drive climate variability. Here we demonstrate that the large-scale Southern Hemisphere atmospheric circulation exhibits marked periodicity on time scales of approximately 20 to 30 days. The periodicity is tied to the Southern...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Hydrology

سال: 2021

ISSN: ['2589-9155']

DOI: https://doi.org/10.1016/j.jhydrol.2021.126086